Oxygen window in diving decompression

From Infogalactic: the planetary knowledge core
(Redirected from Oxygen window)
Jump to: navigation, search

In diving, the oxygen window is the difference between the partial pressure of oxygen (ppO2) in arterial blood and the ppO2 in body tissues. It is caused by metabolic consumption of oxygen.[1]

The term "oxygen window" was first used by Albert R. Behnke in 1967.[2] Behnke refers to early work by Momsen on "partial pressure vacancy" (PPV) where he used partial pressures of oxygen and helium as high as 2–3 ATA to create a maximal PPV.[3][4] Behnke then goes on to describe "isobaric inert gas transport" or "inherent unsaturation" as termed by LeMessurier and Hills and separately by Hills.[5][6][7][8] who made their independent observations at the same time. Van Liew et al. also made a similar observation that they did not name at the time.[9] The clinical significance of their work was later shown by Sass.[10]

The oxygen window effect in decompression is described in diving medical texts and the limits reviewed by Van Liew et al. in 1993.[1][11]

This passage is quoted from Van Liew's technical note:[11]
When living animals are in steady state, the sum of the partial pressures of dissolved gases in the tissues is usually less than atmospheric pressure, a phenomenon known as the "oxygen window", "partial pressure vacancy" or "inherent unsaturation".[2][7][10][12] This is because metabolism lowers partial pressure of O2 in tissue below the value in arterial blood and the binding of O2 by hemoglobin causes a relatively large PO2 difference between tissues and arterial blood. Production of CO2 is usually about the same as consumption of O2 on a mole-for-mole basis, but there is little rise of PCO2 because of its high effective solubility. Levels of O2 and CO2 in tissue can influence blood flow and thereby influence washout of dissolved inert gas, but the magnitude of the oxygen window has no direct effect on inert-gas washout. The oxygen window provides a tendency for absorption of the gas quantities in the body such as pneumothoraces or decompression sickness (DCS) bubbles.[9] With DCS bubbles, the window is a major factor in the rate of bubble shrinkage when the subject is in a steady state, modifies bubble dynamics when inert gas is being taken up or given off by the tissues, and may sometimes prevent the transformation of bubble nuclei into stable bubbles.[13]

Van Liew et al. describe the measurements important to evaluating the oxygen window as well as simplify the "assumptions available for the existing complex anatomical and physiological situation to provide calculations, over a wide range of exposures, of the oxygen window".[11]

Background

Oxygen is used to decrease the time needed for safe decompression in diving, but the practical consequences and benefits need further research. Decompression is still far from being an exact science, and divers when diving deep must make many decisions based on personal experience rather than scientific knowledge.

In technical diving, applying the oxygen window effect by using decompression gases with high ppO2 increases decompression efficiency and allows shorter decompression stops. Reducing decompression time can be important to reduce time spent at shallow depths in open water (avoiding dangers such as water currents and boat traffic), and to reduce the physical stress imposed on the diver.

Application

Use of 100% oxygen is limited by oxygen toxicity at deeper depths. Convulsions are more likely when the pO2 exceeds 1.6 bar (160 kPa). Technical divers use gas mixes with high ppO2 in some sectors of the decompression schedule. As an example, a popular decompression gas is 50% nitrox on decompression stops starting at 21 metres (69 ft).

Where to add the high ppO2 gas in the schedule depends on what limits of ppO2 are accepted as safe, and on the diver's opinion on the level of added efficiency. Many technical divers have chosen to lengthen the decompression stops where ppO2 is high and to push gradient[clarification needed] at the shallower decompression stops.[citation needed]

Nevertheless, much is still unknown about how long this extension should be and the level of decompression efficiency gained. At least four variables of decompression are relevant in discussing how long high ppO2 decompression stops should be:

  • Time needed for circulation and elimination of gas through the lungs;
  • The vasoconstrictor effect (reduction of the size of blood vessels) of oxygen, reducing decompression efficiency when blood vessels start contracting;
  • The threshold depth where the critical tissue compartments start off-gassing rather than in-gassing.
  • Cumulative effect of acute oxygen toxicity.

See also

References

  1. 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. 7.0 7.1 Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. 9.0 9.1 Lua error in package.lua at line 80: module 'strict' not found.
  10. 10.0 10.1 Lua error in package.lua at line 80: module 'strict' not found.
  11. 11.0 11.1 11.2 Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.

Additional reading

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.

External links

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found. good in-depth article
  • The Rubicon Research Repository