Pentic 6-cubes

From Infogalactic: the planetary knowledge core
(Redirected from Penticantic 6-cube)
Jump to: navigation, search
6-demicube t0 D5.svg
6-demicube
(half 6-cube)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
160px
Pentic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
160px
Penticantic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
160px
Pentiruncic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
160px
Pentiruncicantic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
160px
Pentisteric 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
160px
Pentistericantic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
160px
Pentisteriruncic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
160px
Pentisteriruncicantic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Orthogonal projections in D6 Coxeter plane

In six-dimensional geometry, a pentic 6-cube is a convex uniform 6-polytope.

There are 8 pentic forms of the 6-cube.

Pentic 6-cube

Pentic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,4{3,34,1}
h5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 1440
Vertices 192
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentellated 6-cube, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png.

Alternate names

  • Stericated 6-demicube/demihexeract
  • Small cellated hemihexeract (Acronym: sochax) (Jonathan Bowers)[1]

Cartesian coordinates

The Cartesian coordinates for the vertices of a pentic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±1,±1,±3)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 150px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t04 D6.svg 150px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 150px 150px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Penticantic 6-cube

Penticantic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,1,4{3,34,1}
h2,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 9600
Vertices 1920
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The penticantic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png, has half of the vertices of a penticantellated 6-cube, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png.

Alternate names

  • Steritruncated 6-demicube/demihexeract
  • cellitruncated hemihexeract (Acronym: cathix) (Jonathan Bowers)[2]

Cartesian coordinates

The Cartesian coordinates for the vertices of a stericantitruncated demihexeract centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±3,±5)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 150px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t014 D6.svg 150px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 150px 150px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Pentiruncic 6-cube

Pentiruncic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,2,4{3,34,1}
h3,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 10560
Vertices 1920
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentiruncic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentiruncinated 6-cube (penticantellated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png.

Alternate names

  • Stericantellated 6-demicube/demihexeract
  • cellirhombated hemihexeract (Acronym: crohax) (Jonathan Bowers)[3]

Cartesian coordinates

The Cartesian coordinates for the vertices of a pentiruncic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±3,±3,±5)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 150px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t024 D6.svg 150px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 150px 150px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Pentiruncicantic 6-cube

Pentiruncicantic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,1,2,4{3,32,1}
h2,3,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 20160
Vertices 5760
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentiruncicantic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentiruncicantellated 6-cube or (pentiruncicantellated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

Alternate names

  • Stericantitruncated demihexeract, stericantitruncated 7-demicube
  • Great cellated hemihexeract (Acronym: cagrohax) (Jonathan Bowers)[4]

Cartesian coordinates

The Cartesian coordinates for the vertices of a pentiruncicantic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±5,±7)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 150px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t0124 D6.svg 150px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 150px 150px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Pentisteric 6-cube

Pentisteric 6-cube
Type uniform 6-polytope
Schläfli symbol t0,3,4{3,34,1}
h4,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 5280
Vertices 960
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentisteric 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentistericated 6-cube (pentitruncated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

Alternate names

  • Steriruncinated 6-demicube/demihexeract
  • Small cellipriamated hemihexeract (Acronym: cophix) (Jonathan Bowers)[5]

Cartesian coordinates

The Cartesian coordinates for the vertices of a pentisteric 6-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±1,±3,±5)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 150px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t034 D6.svg 150px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 150px 150px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Pentistericantic 6-cube

Pentistericantic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,1,3,4{3,34,1}
h2,4,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 23040
Vertices 5760
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentistericantic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentistericantellated 6-cube (pentiruncitruncated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Alternate names

  • Steriruncicantitruncated demihexeract/7-demicube
  • cellitruncated hemihexeract (Acronym: capthix) (Jonathan Bowers)[6]

Cartesian coordinates

The Cartesian coordinates for the vertices of a pentistericantic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±5,±7)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 150px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t0134 D6.svg 150px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 150px 150px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Pentisteriruncic 6-cube

Pentisteriruncic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,2,3,4{3,34,1}
h3,4,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 15360
Vertices 3840
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentisteriruncic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentisteriruncinated 6-cube (penticantitruncated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Alternate names

  • Steriruncicantellated 6-demicube/demihexeract
  • Celliprismatorhombated hemihexeract (Acronym: caprohax) (Jonathan Bowers)[7]

Cartesian coordinates

The Cartesian coordinates for the vertices of a pentisteriruncic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±3,±5,±7)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 150px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t0234 D6.svg 150px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 150px 150px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Pentisteriruncicantic 6-cube

Pentisteriruncicantic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,1,2,3,4{3,32,1}
h2,3,4,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 34560
Vertices 11520
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentisteriruncicantic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentisteriruncicantellated 6-cube (pentisteriruncicantitruncated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Alternate names

  • Steriruncicantitruncated 6-demicube/demihexeract
  • Great cellated hemihexeract (Acronym: gochax) ((Jonathan Bowers)[8]

Cartesian coordinates

The Cartesian coordinates for the vertices of a pentisteriruncicantic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±5,±7)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 150px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t01234 D6.svg 150px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 150px 150px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Related polytopes

There are 47 uniform polytopes with D6 symmetry, 31 are shared by the BC6 symmetry, and 16 are unique:

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 6D, uniform polytopes (polypeta) x3o3o *b3o3x3o3o - sochax, x3x3o *b3o3x3o3o - cathix, x3o3o *b3x3x3o3o - crohax, x3x3o *b3x3x3o3o - cagrohax, x3o3o *b3o3x3x3x - cophix, x3x3o *b3o3x3x3x - capthix, x3o3o *b3x3x3x3x - caprohax, x3x3o *b3x3x3x3o - gochax

External links

  1. Klitzing, (x3o3o *b3o3x3o3o - sochax)
  2. Klitzing, (x3x3o *b3o3x3o3o - cathix)
  3. Klitzing, (x3o3o *b3x3x3o3o - crohax)
  4. Klitzing, (x3x3o *b3x3x3o3o - cagrohax)
  5. Klitzing, (x3o3o *b3o3x3x3x - cophix)
  6. Klitzing, (x3x3o *b3o3x3x3x - capthix)
  7. Klitzing, (x3o3o *b3x3x3x3x - caprohax)
  8. Klitzing, (x3x3o *b3x3x3x3o - gochax)