Dilithium

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Dilithium
Wireframe model of dilithium
Spacefill model of dilithium
Names
IUPAC name
Dilithium[citation needed]
Identifiers
14452-59-6 N
ChemSpider 123254 YesY
Jmol 3D model Interactive image
PubChem 139759
  • InChI=1S/2Li YesY
    Key: SMBQBQBNOXIFSF-UHFFFAOYSA-N YesY
  • [Li][Li]
Properties
Li2
Molar mass 13.88 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Dilithium, Li2, is a strongly electrophilic, diatomic molecule comprising two lithium atoms covalently bonded together. Li2 is known in the gas phase. It has a bond order of 1, an internuclear separation of 267.3 pm and a bond energy of 101 kJ mol−1.[1] The electron configuration of Li2 may be written as σ2.

It has been observed that 1% (by mass) of lithium in the vapor phase is in the form of dilithium.[citation needed][clarification needed] Molecules containing more than two lithium atoms covalently bonded together do exist, albeit in smaller quantities than dilithium. Clusters of lithium atoms also exist; the most common arrangement is Li6.[citation needed]

Being the lightest stable neutral homonuclear diatomic molecule after H2, dilithium is an extremely important model system for studying fundamentals of physics, chemistry, and electronic structure theory. It is the most thoroughly characterized compound in terms of the accuracy and completeness of the empirical potential energy curves of its electronic states. Analytic empirical potential energy curves have been constructed for the X-state,[2] a-state,[3] A-state,[4] c-state,[5] B-state,[6] 2d-state,[7] and l-state,[7] E-state,[8] and the F-state[9] mainly by professors Robert J. Le Roy[2][3][6] of University of Waterloo and Nikesh S. Dattani[2][3][4][5] of University of Oxford. The most reliable of these potential energy curves are of the Morse/Long-range variety.

Li2 potentials are often used to extract atomic properties. For example, the C3 value for atomic lithium extracted from the A-state potential of Li2 by Le Roy et al. in [2] is more precise than any previously measured atomic oscillator strength.[10] This lithium oscillator strength is related to the radiative lifetime of atomic lithium and is used as a benchmark for atomic clocks and measurements of fundamental constants.

Electronic State Spectroscopic Symbol Molecular term symbol Bond length in pm Dissociation energy in cm−1 # of bound vibrational levels Scattering length in Angstroms References
Ground X 11Σg+ 267.298 74(19)[2] 8 516.780 0(23)[2] 39[2] [2]
2 a 13Σu+ 417.000 6(32)[3] 333.779 5(62)[3] 11[3] [3]
3 b 13Πu [7]
4 A 11Σg+ 310.792 88(36)[2] 9 353.179 5 (28)[2] 118[2] [2]
5 c 13Σg+ 306.543 6(16)[3] 7093.4926(86)[3] 104[3]
6 B 11Πu 293.617 142(310)[6] 298 4.444[6] 118[6]
7 E 3(?)1Σg+ [8]

See also

References

  1. Chemical Bonding, Mark J. Winter, Oxford University Press, 1994, ISBN 0-19-855694-2
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 W. Gunton, M. Semczuk, N. S. Dattani, K. W. Madison, High resolution photoassociation spectroscopy of the 6Li2 A-state, http://arxiv.org/abs/1309.5870
  5. 5.0 5.1 Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 6.2 6.3 6.4 Lua error in package.lua at line 80: module 'strict' not found.
  7. 7.0 7.1 7.2 Lua error in package.lua at line 80: module 'strict' not found.
  8. 8.0 8.1 Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.de:Dilithium

it:Litio#Dilitio