Runcinated 8-simplexes

From Infogalactic: the planetary knowledge core
(Redirected from Runcitruncated 8-simplex)
Jump to: navigation, search
8-simplex t0.svg
8-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Runcinated 8-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Biruncinated 8-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Triruncinated 8-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Runcitruncated 8-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Biruncitruncated 8-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Triruncitruncated 8-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Runcicantellated 8-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Biruncicantellated 8-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Runcicantitruncated 8-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Biruncicantitruncated 8-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120px
Triruncicantitruncated 8-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Orthogonal projections in A8 Coxeter plane

In eight-dimensional geometry, a runcinated 8-simplex is a convex uniform 8-polytope with 3rd order truncations (runcination) of the regular 8-simplex.

There are eleven unique runcinations of the 8-simplex, including permutations of truncation and cantellation. The triruncinated 8-simplex and triruncicantitruncated 8-simplex have a doubled symmetry, showing [18] order reflectional symmetry in the A8 Coxeter plane.

Runcinated 8-simplex

Runcinated 8-simplex
Type uniform 8-polytope
Schläfli symbol t0,3{3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 4536
Vertices 504
Vertex figure
Coxeter group A8, [37], order 362880
Properties convex

Alternate names

  • Runcinated enneazetton
  • Small prismated enneazetton (Acronym: spene) (Jonathan Bowers)[1]

Coordinates

The Cartesian coordinates of the vertices of the runcinated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,1,2). This construction is based on facets of the runcinated 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [5] [4] [3]

Biruncinated 8-simplex

Biruncinated 8-simplex
Type uniform 8-polytope
Schläfli symbol t1,4{3,3,3,3,3,3,3}
Coxeter-Dynkin diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges 11340
Vertices 1260
Vertex figure
Coxeter group A8, [37], order 362880
Properties convex

Alternate names

  • Biruncinated enneazetton
  • Small biprismated enneazetton (Acronym: sabpene) (Jonathan Bowers)[2]

Coordinates

The Cartesian coordinates of the vertices of the biruncinated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,1,2,2). This construction is based on facets of the biruncinated 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [5] [4] [3]

Triruncinated 8-simplex

Triruncinated 8-simplex
Type uniform 8-polytope
Schläfli symbol t2,5{3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges 15120
Vertices 1680
Vertex figure
Coxeter group A8×2, [[37]], order 725760
Properties convex

Alternate names

  • Triruncinated enneazetton
  • Small triprismated enneazetton (Acronym: satpeb) (Jonathan Bowers)[3]

Coordinates

The Cartesian coordinates of the vertices of the triruncinated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,1,2,2,2). This construction is based on facets of the triruncinated 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Runcitruncated 8-simplex

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Biruncitruncated 8-simplex

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Triruncitruncated 8-simplex

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Runcicantellated 8-simplex

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Biruncicantellated 8-simplex

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Runcicantitruncated 8-simplex

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Biruncicantitruncated 8-simplex

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Triruncicantitruncated 8-simplex

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Related polytopes

This polytope is one of 135 uniform 8-polytopes with A8 symmetry.

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 8D, uniform polytopes (polyzetta) x3o3o3x3o3o3o3o - spene, o3x3o3o3x3o3o3o - sabpene, o3o3x3o3o3x3o3o - satpeb

External links

  1. Klitzing (x3o3o3x3o3o3o3o - spene)
  2. Klitzing (o3x3o3o3x3o3o3o - sabpene)
  3. Klitzing (o3o3x3o3o3x3o3o - satpeb)