Super-prime

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Super-prime numbers (also known as "higher order primes") are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. The subsequence begins

3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, … (sequence A006450 in OEIS).

That is, if p(i) denotes the ith prime number, the numbers in this sequence are those of the form p(p(i)). Dressler & Parker (1975) used a computer-aided proof (based on calculations involving the subset sum problem) to show that every integer greater than 96 may be represented as a sum of distinct super-prime numbers. Their proof relies on a result resembling Bertrand's postulate, stating that (after the larger gap between super-primes 5 and 11) each super-prime number is less than twice its predecessor in the sequence.

Broughan and Barnett[1] show that there are

\frac{x}{(\log x)^2}+O\left(\frac{x\log\log x}{(\log x)^3}\right)

super-primes up to x. This can be used to show that the set of all super-primes is small.

One can also define "higher-order" primeness much the same way, and obtain analogous sequences of primes. Fernandez (1999)

A variation on this theme is the sequence of prime numbers with palindromic prime indices, beginning with

3, 5, 11, 17, 31, 547, 739, 877, 1087, 1153, 2081, 2381, ... (sequence A124173 in OEIS).

References

  1. Kevin A. Broughan and A. Ross Barnett, On the Subsequence of Primes Having Prime Subscripts, Journal of Integer Sequences 12 (2009), article 09.2.3.
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Lua error in package.lua at line 80: module 'strict' not found..

External links

<templatestyles src="Asbox/styles.css"></templatestyles>