Tetralin

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Tetralin
Skeletal formula
Ball-and-stick model
Names
IUPAC name
1,2,3,4-tetrahydronaphthalene
Other names
naphthalene 1,2,3,4-tetrahydride
Bacticin
benzocyclohexane
THN
Identifiers
119-64-2 YesY
ChEBI CHEBI:35008 YesY
ChemSpider 8097 YesY
Jmol 3D model Interactive image
KEGG C14114 YesY
PubChem 8404
UNII FT6XMI58YQ YesY
  • InChI=1S/C10H12/c1-2-6-10-8-4-3-7-9(10)5-1/h1-2,5-6H,3-4,7-8H2 YesY
    Key: CXWXQJXEFPUFDZ-UHFFFAOYSA-N YesY
  • InChI=1/C10H12/c1-2-6-10-8-4-3-7-9(10)5-1/h1-2,5-6H,3-4,7-8H2
    Key: CXWXQJXEFPUFDZ-UHFFFAOYAG
  • c1ccc2c(c1)CCCC2
Properties
C10H12
Molar mass 132.21 g·mol−1
Appearance Clear, colorless liquid with an odor similar to naphthalene
Density 0.970 g/cm3
Melting point −35.8 °C (−32.4 °F; 237.3 K)
Boiling point 206 to 208 °C (403 to 406 °F; 479 to 481 K)
Insoluble
Viscosity 2.02 cP at 25 °C[1]
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Tetralin (1,2,3,4-tetrahydronaphthalene) is a hydrocarbon having the chemical formula C10H12. This molecule is similar to the naphthalene chemical structure except that one ring is saturated.

Synthesis

The compound can be synthesized in a Bergman cyclization. In a classic named reaction called the Darzens tetralin synthesis, named for Auguste Georges Darzens (1926), derivatives can be prepared by intramolecular electrophilic aromatic substitution reaction of an 1-aryl-4-pentene using concentrated sulfuric acid,[2]

File:Darzens Synthesis of Tetralin Derivatives.png
Darzens synthesis of tetralin derivatives

It can also be prepared by partial hydrogenation of naphthalene in the presence of a platinum catalyst.

Production

Tetralin is produced by the catalytic hydrogenation of naphthalene.

440px

A large amount of work has been devoted to the hydrogenation of naphthalene into tetralin. Mixtures containing different proportions of naphthalene, tetralin, and decalin can be produced depending on the pressure and temperature of the process. Tetralin has been obtained from pressed naphthalene isolated from coal tar by hydrogenating it over commercial catalyst WS2 + NiS + Al2O3 and CoO + MoO3 + Al2O3 under pressure of 50–300 atm. The extent to which naphthalene is hydrogenated at pressures up to 60–70 atm is determined by catalyst activity; it is maximum if CoO + MoO3 + Al2O3 or WS2 + NiS + Al2O3 catalyst are used at 300–370 °C.[3]

Uses

Tetralin is used as a solvent.

It is also used for the laboratory synthesis of dry HBr gas:

C10H12 + 4 Br2 → C10H8Br4 + 4 HBr

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.

Lua error in package.lua at line 80: module 'strict' not found.