Zipf–Mandelbrot law

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Zipf–Mandelbrot
Parameters N \in \{1,2,3\ldots\} (integer)
q \in [0;\infty) (real)
s>0\, (real)
Support k \in \{1,2,\ldots,N\}
pmf \frac{1/(k+q)^s}{H_{N,q,s}}
CDF \frac{H_{k,q,s}}{H_{N,q,s}}
Mean \frac{H_{N,q,s-1}}{H_{N,q,s}}-q
Mode 1\,
Entropy \frac{s}{H_{N,q,s}}\sum_{k=1}^N\frac{\ln(k + q)}{(k + q)^s} +\ln(H_{N,q,s})

In probability theory and statistics, the Zipf–Mandelbrot law is a discrete probability distribution. Also known as the Pareto-Zipf law, it is a power-law distribution on ranked data, named after the linguist George Kingsley Zipf who suggested a simpler distribution called Zipf's law, and the mathematician Benoit Mandelbrot, who subsequently generalized it.

The probability mass function is given by:

f(k;N,q,s)=\frac{1/(k+q)^s}{H_{N,q,s}}

where H_{N,q,s} is given by:

H_{N,q,s}=\sum_{i=1}^N \frac{1}{(i+q)^s}

which may be thought of as a generalization of a harmonic number. In the formula, k is the rank of the data, and q and s are parameters of the distribution. In the limit as N approaches infinity, this becomes the Hurwitz zeta function \zeta(s,q). For finite N and q=0 the Zipf–Mandelbrot law becomes Zipf's law. For infinite N and q=0 it becomes a Zeta distribution.

Applications

The distribution of words ranked by their frequency in a random text corpus is approximated by a power-law distribution, known as Zipf's law.

If one plots the frequency rank of words contained in a moderately sized corpus of text data versus the number of occurrences or actual frequencies, one obtains a power-law distribution, with exponent close to one (but see Powers, 1998 and Gelbukh & Sidorov, 2001). Zipf's law implicitly assumes a fixed vocabulary size, but the Harmonic series with s=1 does not converge, while the Zipf-Mandelbrot generalization with s>1 does. Furthermore, there is evidence that the closed class of functional words that define a language obeys a Zipf-Mandelbrot distribution with different parameters from the open classes of contentive words that vary by topic, field and register.[1]

In ecological field studies, the relative abundance distribution (i.e. the graph of the number of species observed as a function of their abundance) is often found to conform to a Zipf–Mandelbrot law.[2]

Within music, many metrics of measuring "pleasing" music conform to Zipf–Mandelbrot distributions.[3]

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • Lua error in package.lua at line 80: module 'strict' not found. Reprinted as
    • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.

External links

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.