Truncated order-5 pentagonal tiling
From Infogalactic: the planetary knowledge core
Truncated order-5 pentagonal tiling | |
---|---|
Truncated order-5 pentagonal tiling Poincaré disk model of the hyperbolic plane |
|
Type | Hyperbolic uniform tiling |
Vertex configuration | 5.10.10 |
Schläfli symbol | t{5,5} |
Wythoff symbol | 2 5 | 5 |
Coxeter diagram | |
Symmetry group | [5,5], (*552) |
Dual | Order-5 pentakis pentagonal tiling |
Properties | Vertex-transitive |
In geometry, the truncated order-5 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{5,5}, constructed from one pentagons and two decagons around every vertex.
Related tilings
Uniform pentapentagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [5,5], (*552) | [5,5]+, (552) | ||||||||||
= |
= |
= |
= |
= |
= |
= |
= |
||||
{5,5} | t{5,5} |
r{5,5} | 2t{5,5}=t{5,5} | 2r{5,5}={5,5} | rr{5,5} | tr{5,5} | sr{5,5} | ||||
Uniform duals | |||||||||||
V5.5.5.5.5 | V5.10.10 | V5.5.5.5 | V5.10.10 | V5.5.5.5.5 | V4.5.4.5 | V4.10.10 | V3.3.5.3.5 |
See also
Wikimedia Commons has media related to Uniform tiling 5-10-10. |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- Lua error in package.lua at line 80: module 'strict' not found.
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
<templatestyles src="Asbox/styles.css"></templatestyles>